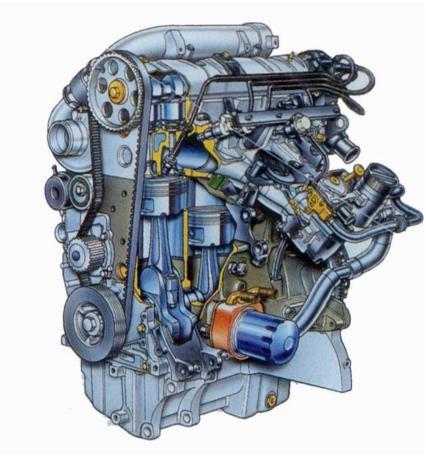


Chapter 4: Compression Ignition Engines (Diesel engines)

Learning objectives of chapter 4

- ⇒ know the <u>fuel properties</u> required for a Diesel cycle and recognize the different phases of the combustion process
- ⇒ know the operating principles of the most common <u>injection</u> systems used in Diesel engines
- ⇒ understand the <u>load regulation</u> strategy of Diesel engines and the influence of key control parameters on performances
- ⇒ establish the thermal balance and energy distribution in a Diesel engine for (i) transport or (ii) cogeneration (=> Exercise)

Content of Chapter 4


- Application range
- Operating principle
 - Fuel properties of "Diesel" fuel
 - Injection system
 - Injection process
 - Diesel combustion process
- Load regulation parameters
 - Partial load operation
 - Full load operation
- Energy distribution in Diesel engines
 - Conventional engines
 - Cogeneration engines

Application range

Common use and applications

- 4-stroke cycle (< 10 MW)
 - Passenger cars (≈ 50%)
 - Heavy duty vehicles (≈ 100%)
 - Off-road vehicles
 - Agricultural machines (high V_{cyl})
 - Medium-speed marine engines
 - Generators (electricity)
- 2-stroke cycle (> 10 MW)
 - Low-speed marine engines
 - Generators

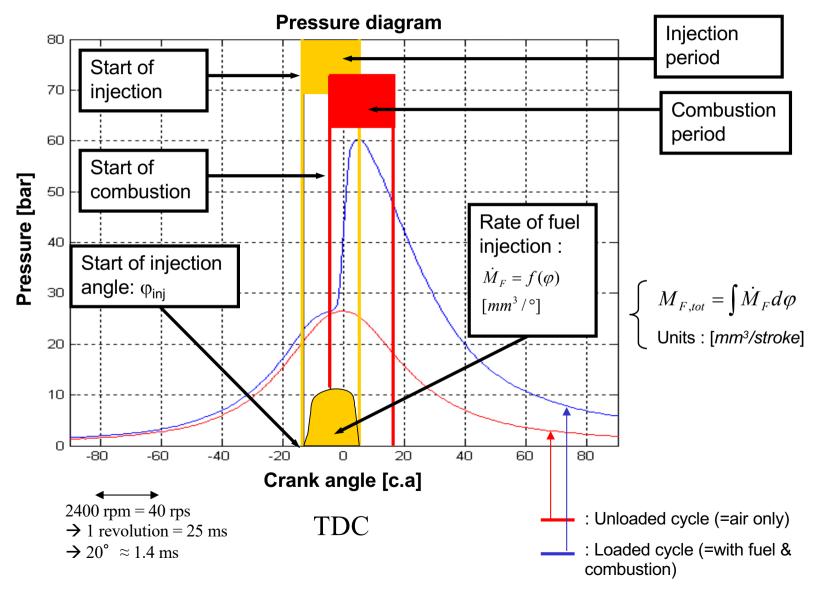
Content of Chapter 4

- Application range
- Operating principle
 - Fuel properties of Diesel fuel
 - Injection system
 - Injection process
 - Diesel combustion process
- Load regulation parameters
 - Partial load operation
 - Full load operation
- Energy distribution in Diesel engines
 - Conventional engines
 - Cogeneration engines

General

- The combustion process in a DIESEL engine starts thanks to the spontaneous ignition of the fuel injected to highly pre-compressed air in the cylinder
 - ⇒ Firing by auto-ignition of the fuel in (highly) compressed air
 - ⇒ Injection of fuel under very high pressure close to TDC
 - \Rightarrow High compression ratio (ϵ > 15)
 - ⇒ to obtain the required conditions for **auto-ignition** (initiation of combustion process)
 - \Rightarrow Combustion in <u>heterogeneous</u> fuel-air mixture
- φ_{inj} : injection (crank) angle
 - ⇒ defines the «timing» of the combustion in the engine cycle

Rate of fuel injection : (it takes time!)


$$\dot{M}_F = f(\varphi_{c.a})$$

next slide

Combustion must be as fast as possible, else the exhaust T will be too high

General

- Fuel properties of "Diesel"
 - Different types of fuel have "Diesel" designation

Diesel

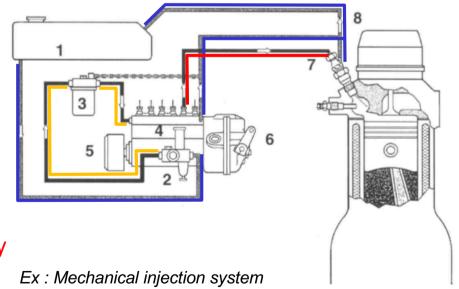
⇒ commercial Diesel, Biodiesel, domestic fuel, heavy fuel oil (HFO – marine)

ρ [kg/L]	Distillation initial T°	range [°C] final T°	Nb of carbon atoms	R _{A/F} [kg _{air} /kg _{fuel}]	LHV by mass [kJ / kg]	LHV by volume [kJ / L]
0.82 - 0.86	200 - 220	300 - 330	8 - 30	≈ 14.5	≈ 42'600 (Gasoline ≈ 42'690)	≈ 35'600 (<i>Gasoline</i> ≈ 32'000)

⇒ The flammability range is not specified because A/F mixture is heterogeneous !

Cetane number : CN ('cetane' = C₁₆H₃₄, hexadecane)

$$\frac{\textit{LHV}_{\textit{vol},\textit{DIESEL}}}{\textit{LHV}_{\textit{vol},\textit{GASOLINE}}} \cong 1.11^{L_{\textit{gasoline}}} / L_{\textit{Diesel}}$$

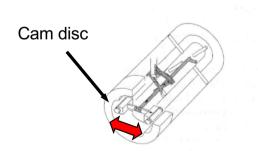

- characterizes the auto-ignition capacity
- CN xx ⇒ corresponds to a binary mixture of 2 pure HC fuels with the same behavior than the one which is analyzed (measured on a reference engine CFR*)
 - CN 0 : corresponds to a fuel-mix identical to 100% α -methylnaphtalene (very resistant to auto-ignition)
 - CN 100 : corresponds to a fuel-mix identical to 100% n-cetane (very favorable to auto-ignition => fast combustion)
- commercial fuels : CN ≈ 40 to 60

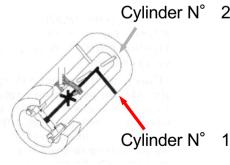
*CFR cooperative fuel research (definition of fuel mixtures)

Injection system (=key) for DIESEL engines

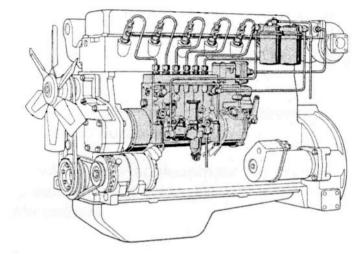
- Composed of 2 main circuits
 - low-pressure circuit ⇒ from 3 to 6 bar
 - (very) high-pressure circuit ⇒ from 1000 to 2000 bar (and more)!
- Injection fuel-delivery control
 - mechanical
 - electronic
 - 1. Tank
 - 2. Supply pump (low p)
 - 3. Fuel filter
 - 4. Injection pump (high p)
 - 5. Timing device
 - 6. Governor (fuel rate)
 - 7. Nozzle and holder assembly
 - 8. Overflow line

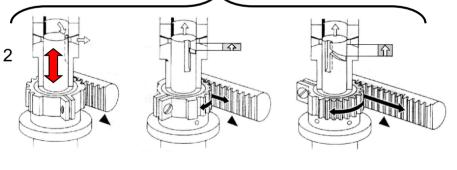
A failing injector (or a failing turbocharger) may lead to average lambda below 1.2 and hence black smoke.



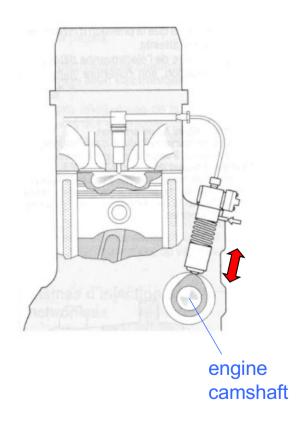

Injection system for DIESEL engines (oldest to newest)

- a) in-line pump
 - 1 pump "plunger" for each cylinder
 - Mechanical regulation:
 - ⇒ pump : camshaft, plunger & barrel, governor
 - \Rightarrow nozzle : pre-tensioned spring at $P_{\text{injector opening}}$
 - Electronic regulation
 - ⇒ electro-actuators


b) distributor-type pump

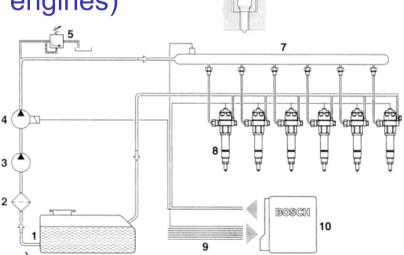

1 pump "plunger"for all injection nozzles

Mechanical or electronic regulation

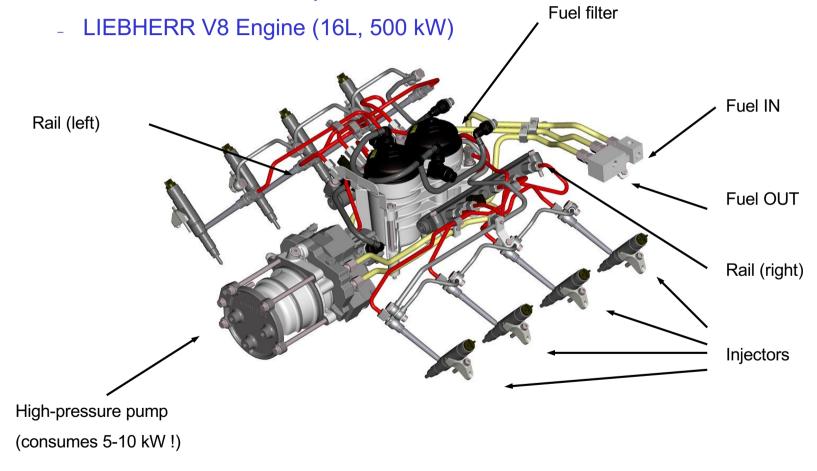


Fuel quantity regulation on an inline mechanical pump

- Injection system for DIESEL engines (oldest to newest)
 - c) Unitary pump (1980'ies)
 - 1 "pumping unit" per cylinder / nozzle
 - No specific camshaft or cam-disc is required
 - Driven by the engine camshaft
 - Very high injection pressure (⇒ 1800 bar)
 - Electronic regulation
 - ⇒ Electro-actuators are mounted on the high-pressure circuit side
 - Injector / nozzle
 - \Rightarrow Mechanical device with spring ($P_{\text{discharge}}$) activates the injector opening



- Injection system for DIESEL engines
 - d) Unit injector (>yrs 2000'ies)
 - Pump and injector are one unique component driven
 by the engine camshaft
 - «high pressure» connectors are suppressed
 - Very high injection pressure ⇒ > 2000 bar



- Rail ⇒ pressure accumulator
- Injectors with electronic actuators
 - Multiple injections are feasible
- Pressure generation is obtained by:
 - In-line pump
 - Distributor-type pump
- Variable injection pressure of400 to 1800-2000 bar (since 2010 : > 2200 bar)

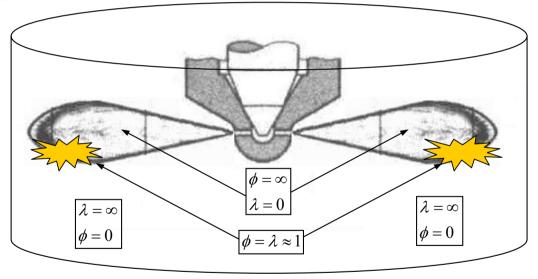
- Injection system for DIESEL engines
 - Common Rail : example

Types of DIESEL combustion systems

- INDIRECT-injection IDI: (old technology)
 - Combustion chamber divided into 2 regions
 - a) Prechamber (into the cylinder-head)
 - b) Combustion (main) chamber
 - a) and b) are connected via a nozzle
 - Creation of high turbulence (v_{flow} ▷ ▷)
 - $_{-}$ ε \approx 21:1 to 24:1 (very high T and NOx)

- Combustion chamber = 1 unique volume
 defined by the piston shape (bowl) and cylinder head.
- The control of internal air flow motion (swirl)
 and the design of injector (hole geometry, number)
 are CRITICAL for good operation
- $_{-}$ ε \approx 15:1 to 21:1 (lower T and NOx)
- always with a turbocharger (2-3 bar air pressure)





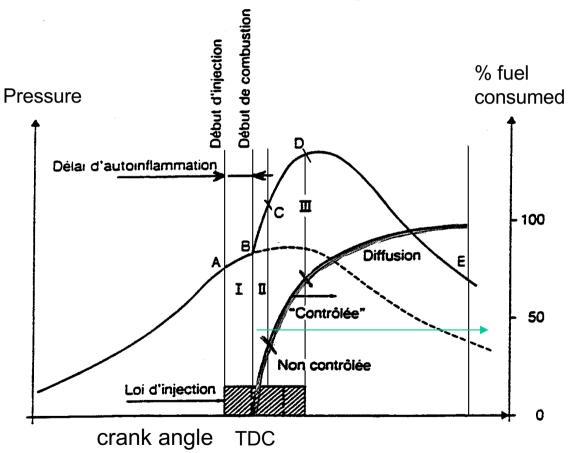
- DIESEL combustion process
 - The injection system of Diesel engines induces a strong gradient of the air-fuel mixing into the combustion chamber
 - ⇒ Diesel combustion process occurs in a highly heterogeneous environment:

⇒ We use the notion of a <u>global</u> Air/Fuel ratio (or Fuel/air ratio) which corresponds to the mean value of the mixing!

- DIESEL combustion process
 - The combustion sequence takes place in 3 different stages:

I. Ignition delay segment AB

Determined by the cetane number CN. The higher CN, the faster the combustion


II. Premixed (or rapid) combustion phase (uncontrolled)

segment BC

steep P-gradient (noise)

III. Diffusion (or mixingcontrolled) combustion phase segment CE

~ 'constant' P-regime, characteristic of diesel cycle (see Chapter 2)

DIESEL combustion process

I) Ignition delay: (segment AB)

The period between the start of fuel injection and the start of the combustion (determined from the change in slope on $P-\varphi$). Depends on:

- Physical delay (atomization, vaporization and diffusion of fuel before reaching the conditions of auto-ignition)
 - \Rightarrow jet characteristics (hole shape (conical), number of holes, $P_{\text{injection}}$)
- Chemical delay (chemical process which leads to the auto-ignition)
 - ⇒ Fuel properties (type, cetane number CN)
 - ⇒ Thermodynamic conditions (pressure and temperature)
 - ⇒ local A/F ratio

II) Premixed combustion phase : (segment BC)

After the injection, the vaporized fuel, which has mixed with air, burns rapidly in a few crank angle degrees and without any control.

- ⇒ phase conditioned by the auto-ignition delay & rate of fuel injection
- ⇒ strong pressure gradient (rise in bar per crank angle° = source of **noise** for Diesel engines)

DIESEL combustion process

III) Diffusion combustion phase: (segment CDE)

Progressive and <u>controlled</u> fuel combustion by diffusion flame as and when the fuel is injected and meets oxygen necessary for the combustion.

Diffusion phase includes 2 parts:

- 1. Mixing-controlled phase. Controlled by the processes of <u>vaporization</u> and <u>mixing</u> during injection: *segment* CD
- 2. Late combustion phase. Small fraction of fuel may not yet have burned and combustion continues after the end of the injection during expansion:

 segment* DE
- ⇒ Internal air flow motion (**turbulence**)
 generated by **swirl** accelerates the combustion
 process by diffusion (and also to prevent fuel jets from
 hitting the cylinder walls (sooth formation, cavitation)

Stream lines: swirl

Content of Chapter 4

- Application range
- Operating principle
 - Fuel properties of a "Diesel"
 - Injection system
 - Injection process
 - Diesel combustion process
- Load regulation parameters
 - Partial load operation
 - Full load operation
- Energy distribution in Diesel engines
 - Conventional engines
 - Cogeneration engines

Relations

Monocylinder:

$$\dot{E_i} = n_c \cdot E_i$$
 and $\eta_i = \frac{E_i}{\dot{Y}_{comb}} \approx \frac{E_i}{\dot{M}_F \cdot LHV}$

- E_i as a function of M_F :

$$\dot{E}_i = n_c \cdot \eta_i \cdot M_F \cdot LHV$$

with
$$\dot{M}_F = n_c \cdot M_F = n_c \cdot \frac{M_A}{R_{A/F}} \cdot \frac{1}{\lambda}$$

 \dot{M}_F : Fuel quantity introduced per cycle (and per cylinder)

 n_c : number of engine cycles per second

- E_i as a function of M_A :

$$\dot{E}_{i} = n_{c} \cdot \eta_{i} \cdot M_{A} \cdot \underbrace{\frac{LHV}{R_{A/F} \cdot \lambda}}_{q} \quad \text{with}$$

$$q = \begin{cases} \frac{LHV}{R_{A/F}} \cdot \frac{1}{\lambda} & \text{if} \quad \lambda \ge 1 \\ \\ \frac{LHV}{R_{A/F}} & \text{if} \quad \lambda \le 1 \end{cases}$$

 M_A : Air mass introduced per cylinder

q: Energy content of the mixture: [kJ/kg_{air}]

(λ <1 never the case with Diesel, always air excess)

 $M_{\rm A}$ as a function of $P_{\rm coll}$, $T_{\rm coll}$: $M_{\rm A} = r$

$$M_{A} = \eta_{vol} \cdot \frac{P_{coll}}{r \cdot T_{coll}} \cdot V_{u}$$

ideal gas law

or
$$M_{_A} = \eta_{_{vol}} \cdot \rho_{_{coll}} \cdot V_{_u}$$

 η_{vol} : Volumetric efficiency

 $V_{\rm u}$: Cylinder displacement

$$oldsymbol{\eta_{vol}} = rac{M_{A,real}}{M_{A,ideal}}$$

with
$$M_{A,ideal} = \rho_{coll} \cdot V_u$$

'<u>coll</u>ector' = 'intake', 'adm',...

Relations

Monocylinder:

$$\dot{E}_{i} \text{ as a function of } P_{\text{coll}}, T_{\text{coll}}: \qquad \dot{E}_{i} = n_{c} \cdot \eta_{i} \cdot \eta_{vol} \cdot \frac{P_{coll}}{r \cdot T_{coll}} \cdot V_{u} \cdot q$$

- \vec{E}_i as a function of M_A : $\dot{E}_i = \eta_i \cdot \dot{M}_A \cdot q$

$$\dot{E}_i = \eta_i \cdot \dot{M}_A \cdot q$$

with

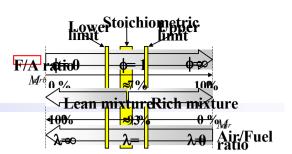
$$\dot{M}_{A} = n_{c} \cdot \eta_{vol} \cdot \frac{P_{coll}}{r \cdot T_{coll}} \cdot V_{u}$$

Note: for naturally aspirated Diesel engine ⇒

$$P_{coll} \approx P_{atm} \rightarrow \dot{M}_A = f(N)$$

• <u>Multi</u>cylinder:

$$\dot{E}_{i} = \eta_{i} \cdot \underbrace{\frac{N}{60 \cdot n_{TM}} \cdot \eta_{vol} \cdot \frac{P_{coll}}{r \cdot T_{coll}} \cdot V_{cyl}}_{N_{A}} \cdot q$$


with
$$V_{cyl} = n \cdot V_u$$

(n_{TM} = 2 for 4-stroke)

$$\dot{E}_e = \eta_{org} \cdot \dot{E}_i \qquad \Rightarrow \qquad$$

$$\dot{E}_e = \underbrace{\eta_{org} \cdot \eta_i}_{\eta_e} \cdot \underbrace{\eta_c}_{N/120} \cdot M_A \cdot q$$

Massflow in diesel engine is a fct of the engine speed N (for atm. intake; else, in addition, also on the turbocharge compression)

Summary

■ Effective power depends on ⇒

$$\dot{E}_e = f(\eta_{org}, \eta_i, N, M_{air}, q)$$

Means of action on effective power $\mathbf{\dot{E}}_{e}$:

Mass of air : M_A

$$M_{air} = f(\eta_{vol}, T_{adm}, P_{adm})$$

Energy content of the mixture : q

$$q = f(LHV, R_{A/F}, \lambda)$$

Pressure variation in the manifold

Nat. aspirated engines: $P_{\text{adm}} \approx P_0$

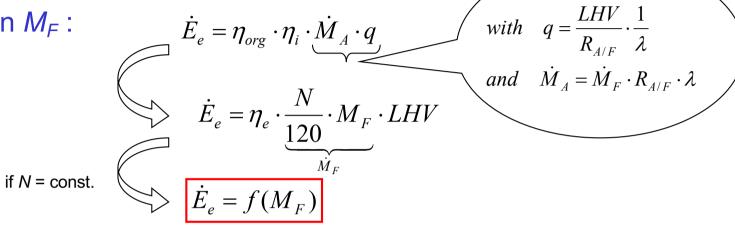
Turbocharged engines: $P_{\text{turbo min}} < P_{\text{adm}} < P_{\text{turbo max}}$

Fuel/Air ratio variation

 λ_{\min} < λ < λ_{\max} $\lambda_{\text{smoke limit}}$ < λ < ∞

 $P_{\text{adm}} \Rightarrow \text{Potential to increase the } \frac{\text{maximal}}{\text{power of the engine (FULL LOAD)}}$

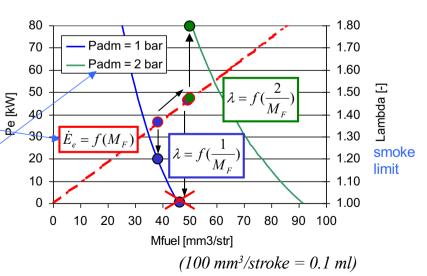
= act on the air turbocharger (P)


 $\lambda \Rightarrow$ Means of action to change the engine's <u>load</u> (PARTIAL LOAD)

= act on the fuel injector (P)

Partial load operation

• Action on M_F :



⇒ The power regulation in partial load is done by acting on the fuel quantity

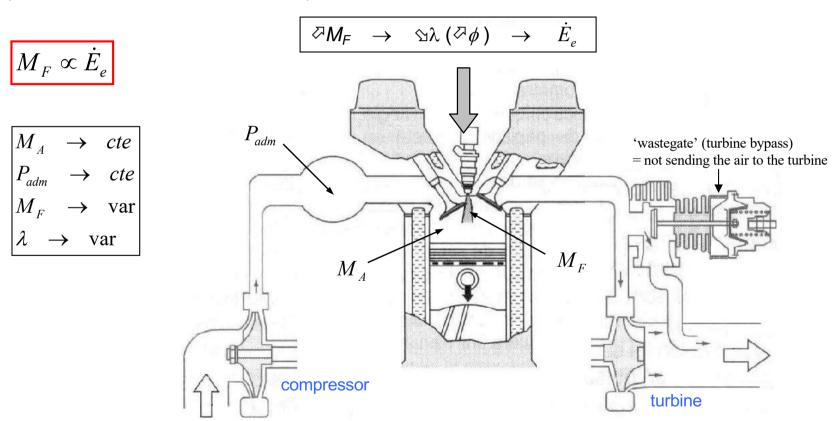
injected into the cylinder $M_{\rm F}$

$$\begin{aligned} V_{cyl} &= 2 \ L \\ \eta_e &= 40 \ \% \\ N &= 2000 \ rpm \end{aligned} \longrightarrow \dot{E}_e \approx cte \cdot M_F$$

$$T_{adm} &= 25^{\circ} \\ \eta_{vol} &= 100 \ \% \end{aligned} \longrightarrow \lambda = cte \cdot \frac{M_A \left(f(P_{adm}) \right)}{M_F}$$

Verification:

2000 rpm = 33 rps = 16.5 stroke/s


 $50 \text{ mm}3/\text{stroke} = 0.05 \text{ ml} \Rightarrow 16.5 \text{ stroke/s} = 0.82 \text{ ml/s} = 0.65 \text{ g/s} = 28 \text{ kJ/s}$

 \Rightarrow 40% efficiency = 11 kW \Rightarrow 4 cylinders = 44 kW.

Partial load operation

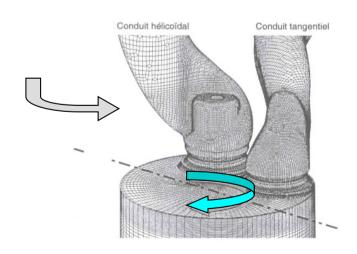
• Regulation of E_e by acting on the fuel quantity injected : $[mm^3/stroke]$ (with constant air flow rate!)

Full load operation

• Reminder: Effective power depends on $\Rightarrow \dot{E}_e = f(\eta_{org}, \eta_i, N, q, M_A)$

- Δ η_{org} : Increase of friction losses with increase of engine speed $\eta_{org} = f(N) \Rightarrow \text{no major influence}$
- The "timing" of the combustion in the engine cycle influences the *SFC* $\phi_{\text{inj}} = f(SFC) \Rightarrow \text{low influence}$
- \nearrow N (rpm): $\sigma_{mechanical}$ (stress) and the combustion by diffusion limit the maximal engine speed Example in automotive applications: N_{max} < 5000 rpm \Rightarrow limited influence
- Limit on λ to avoid the appearance of black smoke ($\lambda_{\rm mean} \approx 1.25$) $q_{\rm max} = \frac{LHV}{R_{A/F}} \cdot \frac{1}{\lambda_{\rm max}} \rightarrow \approx 2350 [kJ/kg_{air}] \implies {\rm limited\ influence}$
- Practically, there are no limits to an increase of the air flow $\dot{E}_{e,\max} = f(M_A)$

Full load operation

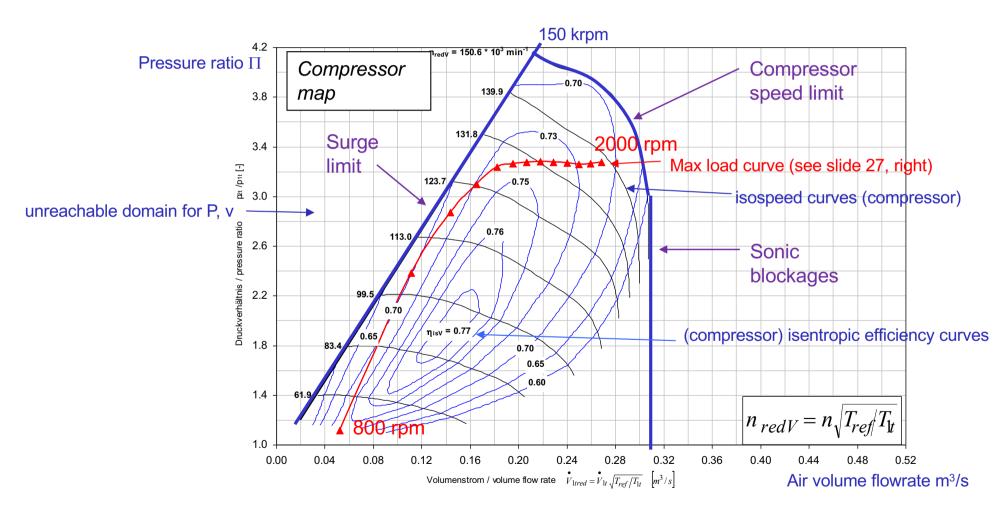

• Action on M_A :

$$\dot{E}_{e,\text{max}} = f(M_A)$$

$$M_A = \eta_{vol} \cdot \frac{P_{coll}}{r \cdot T_{coll}} \cdot V_u$$

$$\dot{E}_e = f(\eta_{vol}, P_{coll}, T_{coll})$$

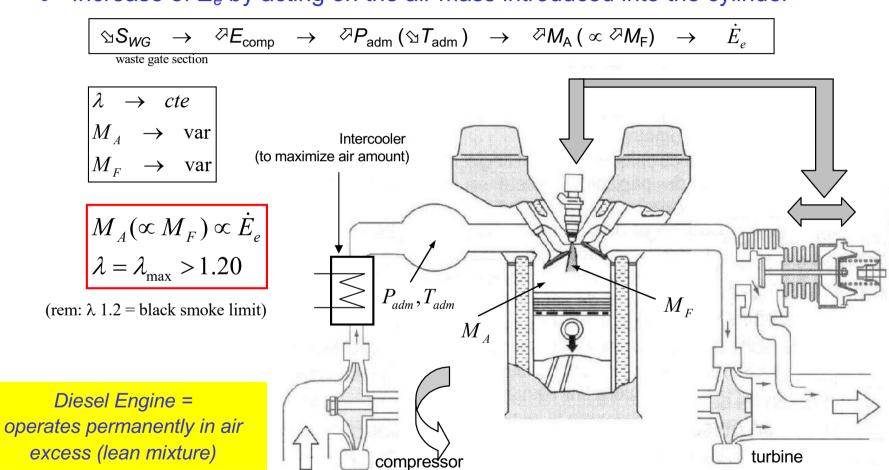
- ⇒ Maximal power is obtained by increasing the mass air flow of the engine
- $\eta_{vol} \Rightarrow$ constraints due to the internal air motion
- $P_{coll} \Rightarrow$ Superchargers and Turbochargers
- $T_{coll} \Rightarrow$ Turbocharged Heat exchangers (intercooled compression)



Full load operation Compressor Waste Turbochargers exhaust gate A challenge is to find a well matching compressor map that meets all situations of the engine map. Variable Nozzle **Turbine Turbine** PSA 2.0HDI **VOLVO D12** compr. torque 280 90 torque 2200 320 power 260 80 300 2100 240 70 2000 280 260 240 222 200 Anissance [kM] Puissance [kW] 220 1900 1800 1700 1600 Couple [Nm] 200 50 180 160 30 1600 140 20 1500 180 → Couple 1450 Couple 120 1400 160 10 Puissance Puissance 100 1300 140 1000 1500 2000 2500 3000 3500 4000 4500 5000 800 1000 1200 1400 1600 1800 2000 rpm Régime [tr/mn] rpm Régime [tr/mn] truck car

Full load operation

Turbocharging ⇒ interaction between engine & turbomachinery



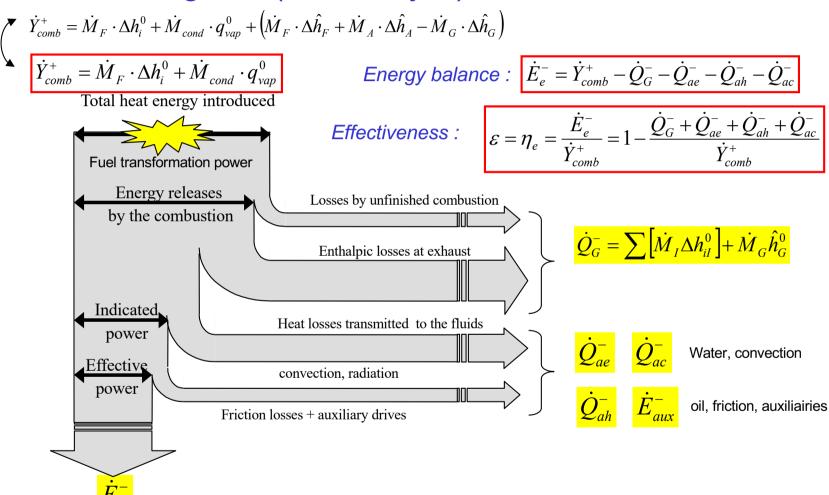
Sonic limit: pumping 300 L/s air through a 10 cm^2 section corresponds to a speed of 300 m/s = 1000 km/h.

Full load operation

• Increase of \dot{E}_e by acting on the air mass introduced into the cylinder

Content of Chapter 4

- Application range
- Operating principle
 - Fuel properties of a "Diesel"
 - Injection system
 - Injection process
 - Diesel combustion process
- Load regulation parameters
 - Partial load operation
 - Full load operation
- Energy distribution in Diesel engines
 - Conventional engines
 - Cogeneration engines


standard conditions Conventional engines (boundary F) P_a , T_a $\dot{Y}_{comb}^{\scriptscriptstyle +} = fuel\ transformation\ power$ \dot{E}_{e}^{-} = work rate (effective power) exhaust gas \dot{Q}_{G}^{-} = heat rate losses of the exhaust gas \dot{Q}_{ae}^{-} = heat rate losses of the water network \dot{Q}_{ab}^{-} = heat rate losses of the oil network \dot{Q}_{ac}^{-} = heat rate deperdition by conduction (and radiation, convection) F: Boundary of the water « engine » system cooling \dot{Y}_{comb}^{+} Scheme of a Diesel engine

oil

Conventional engines (boundary F)

Conventional engines (boundary F)

Energy balance:

Fuel transformation power:

Heat rate losses of the exhaust gases:

Heat rate losses of cooling water:

Heat rate losses of oil:

Heat rate loss of conduction etc.:

Exergy balance:

Exergy efficiency:

$$\dot{E}_{e}^{-} = \dot{Y}_{comb}^{+} - \dot{Q}_{G}^{-} - \dot{Q}_{ae}^{-} - \dot{Q}_{ah}^{-} - \dot{Q}_{ac}^{-}$$

$$\dot{Y}_{comb}^{+} = \dot{M}_{F} \Delta h_{i}^{0} + \dot{M}_{cond} \cdot q_{vap}^{0}$$
 HHV

$$\dot{Q}_{G}^{-} = \dot{M}_{G} \cdot \hat{h}_{G} + \sum \dot{M}_{I} \cdot \Delta h_{iI}^{0}$$

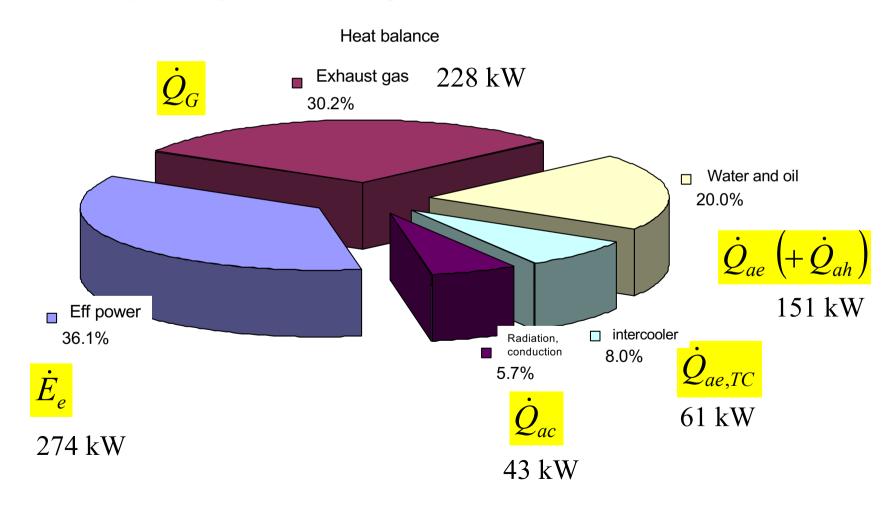
$$\dot{Q}_{ae}^{-} = \dot{M}_{e} \cdot (h_{e2} - h_{e1})$$

$$\dot{Q}_{ah}^{-} = \dot{M}_{h} \cdot (h_{h2} - h_{h1})$$

$$\dot{Q}_{ac}^{-}$$

$$\dot{Q}_{ac}^{-}$$
Energy loss of the system

$$\dot{E}_{e}^{-} = \underbrace{\dot{E}_{y,comb}^{+}}_{\dot{M}_{F} \cdot \Delta k^{0}} - \dot{L}$$


$$\eta = \frac{\dot{E}_e^-}{\dot{M}_F \Delta k^0} = 1 - \frac{\dot{L}}{\dot{M}_F \Delta k^0}$$

$$\dot{E}_{y,comb}^{+} = Fuel\ exergy \ transformation$$

$$\dot{L} = Exergy loss$$

- Conventional engines (boundary F)
 - Energy balance: example
 6 in-line cylinder engine 12 L, 274 kW @ 1800 rpm

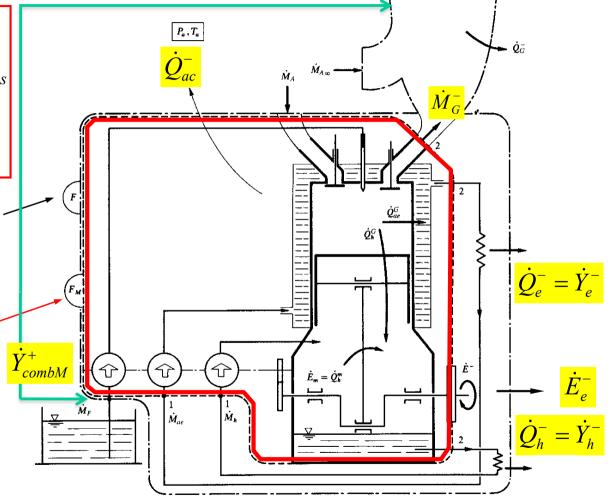
Cogeneration engines (boundary F_M)

 $\dot{Y}_{comb}^{+} = fuel transformation power$

 $\dot{E}_{e}^{-} = work \ rate \ (effective \ power)$

 $\dot{M}_G^- \cdot \hat{h}_G^{} =$ transformation power of the exhaust gas

 \dot{Y}_{ae}^{-} = transformation power of the water network


 \dot{Y}_{ah}^{-} = transformation power of the oil network

 \dot{Q}_{ac}^{-} = heat rate deperdition by conduction

F: Boundary of the « engine » system

Scheme of a cogeneration engine

 F_M : Boundary of the « cogeneration engine » system

Cogeneration engines (Boundary F_M)

Energy balance:

$$\dot{E}_{e}^{-} + \dot{Y}_{ae}^{-} + \dot{Y}_{ah}^{-} = \dot{Y}_{combM}^{+} - \dot{Q}_{ac}^{-}$$

Fuel transformation power:

$$\dot{Y}_{combM}^{+} = \dot{M}_{F} \Delta h_{i}^{0} - \dot{M}_{I} \Delta h_{iI}^{0} + \dot{M}_{cond} q_{vap}^{0} - \dot{M}_{G} \hat{h}_{G}$$

Transformation power of water :

$$\dot{Y}_{ae}^{-} = \dot{Q}_{ae}^{-} = \dot{M}_{e}(h_{e2} - h_{e1})$$

Transformation power of oil:

$$\dot{Y}_{ah}^{-} = \dot{Q}_{ah}^{-} = \dot{M}_{h}(h_{h2} - h_{h1})$$

Engine effectiveness:

$$\varepsilon_{M} = \frac{\dot{E}_{e}^{-} + \dot{M}_{G} \hat{h}_{G} + \dot{Y}_{ae}^{-} + \dot{Y}_{ah}^{-}}{\dot{M}_{F} \Delta h_{i}^{0} - (\dot{M}_{I} \Delta h_{iI}^{0}) + \dot{M}_{cond} q_{vap}^{0}}$$

Exergy balance:

$$\dot{E}_{e}^{-} + \dot{E}_{yae}^{-} + \dot{E}_{yah}^{-} = \dot{E}_{y,combM}^{+} - \dot{L}_{M}$$

Exergy efficiency:

$$\eta_{M} = \frac{\dot{E}_{e}^{-} + \dot{M}_{G} \cdot \hat{k}_{G} + E_{yae}^{-} + E_{yah}^{-}}{\dot{M}_{F} \Delta k^{0} - \dot{M}_{I} \Delta k_{I}^{0}} = 1 - \frac{\dot{L}}{E_{y,combM}^{+}}$$